
Week	10	–
Application	
Security

6/11/2015 1COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015

Exploitations

6/11/2015 2COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015

Exploits	and	Metasploits

6/11/2015 3COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015

Exploits	and	Vulnerability	
Database
https://www.exploit-db.com

https://github.com/offensive-security/exploit-database (SearchSploit
for	Exploit-db.com)

http://www.securityfocus.com (Bugtraq ID)

http://packetstormsecurity.com

http://www.cvedetails.com (CVE)

https://cve.mitre.org/cve/index.html (CVE)

http://www.rapid7.com/db/vulnerabilities (from	Rapid	7)

http://www.rapid7.com/db/modules (Modules	 for	Metasploit)

http://www.tenable.com/pvs-plugins (Tenable	Nessus)

6/11/2015 COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015 4

Exploits	(Recent	cases)
Internet	Explorer	vulnerabilities

StageFright

Thunderstrike 2

6/11/2015 COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015 5

Metasploit

6/11/2015 6COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015

Metasploit

6/11/2015 7

https://informationtreasure.wordpress.com/2014/07/24/penetration-
testing-crash-windows-7-using-metasploit-and-remote-desktop-connection-
vulnerability/ COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015

Buffer	OverFlow
attack

6/11/2015 8COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015

Buffer	Overflow
One	of	the	most	common	attack	method

program	routine	without	buffer	boundary

extra	input	is	written	to	some	other	allocated	space

can	insert	malicious	code	to	the	system

6/11/2015 9COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015

Motivation
There	has	been	a	large	number	of	buffer	overflow	vulnerabilities	being	
both	discovered	and	exploited.		

Examples	of	these	are	syslog,	splitvt,	sendmail	8.7.5,	Linux/FreeBSD	
mount,	Xt	library,	at,	Eudora	5.1.*,	etc.

New	attacks	are	discovered	every	month.

6/11/2015 10COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015

Basic	definitions
A	buffer	 is	simply	a	contiguous	block	of	memory	that	holds	multiple	
instances	of	the	same	data	type.		
◦ Most	commonly,	character	arrays
◦ Static:	allocated	at	load	time	on	the	data	segment.		
◦ Dynamic:	allocated	at	run	time	on	the	stack.	

To	overflow	 is	to	flow,	or	fill	over	the	top,	brims,	or	bounds.	

6/11/2015 11COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015

Computer	Architecture
A	simple	computer	consists	of
◦ CPU
◦ Memory	and	Registers
◦ Storages
◦ I/O	and	accessory	devices

CPU	executes	instructions	from	memory

Registers	hold	temporary	values.

Both	code	and	data	are	placed	in	the	memory

6/11/2015 12COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015

Process	Memory	Organization
A	process	is	a	program	in	execution

An	executable	program	have:
◦ binary	code	to	be	executed	by	the	processor
◦ read-only	data,	such	as	static	strings
◦ global	and	static	data	that	lasts	throughout	the	program	execution
◦ brk pointer	that	keeps	track	of	the	malloced memory
◦ Function	local	variables	are	automatic	variables
◦ created	on	the	stack	whenever	function	executes
◦ cleaned	up	as	the	function	terminates

6/11/2015 13COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015

Process	Memory	Organization
A	process	image	starts	with	the	
program's	code	and	data
◦ Code	consists	of	the	program's	
instructions

◦ Data	are	initialized	and	uninitialized	
static	and	global	data

After	that	is	the	run-time	heap	
(dynamic	allocate)

At	the	top	is	the	users	stack
◦ Used	whenever	a	function	call	is	
made

6/11/2015 14COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015

Memory	layout	of	a	Linux	process

What	is	a	stack?
Abstract	data	type
◦ last	object	placed	on	the	stack	will	be	the	
first	object	removed.		

Commonly	referred	 to	as	last	in,	first	
out	queue,	or	a	LIFO

6/11/2015 15COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015

What	is	a	stack?
Several	operations	are	defined	on	stacks

Two	key	operations	are	PUSH	and	POP
◦ PUSH:	adds	an	element	 at	the	top	of	the	stack.		
◦ POP:	reduces	the	stack	size	by	one	by	removing	the	last	element	at	the	top	
of	the	stack.

6/11/2015 16COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015

The	Stack	Region
Stack:	A	contiguous	block	of	memory	containing	
data.	
Whenever	a	function	call	is	made
◦ function	parameters	are	pushed	onto	the	stack	from	right	
to	left

◦ The	return	address	(executed	when	function	returns)
◦ A	frame	pointer	(FP),	is	pushed	on	the	stack.
◦ Local	automatic	variables.	

6/11/2015 17COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015

The	Stack	Region
A	stack	pointer	(SP)	points	to	the	top	of	the	stack.	

A	frame	pointer	is	(FP)	used	to	reference	 the	local	variables	and	the	
function	parameters
◦ at	a	constant	distance	from	the	FP.	

In	Intel,	stacks	grow	from	higher	memory	addresses	 (bottom)	to	the	
lower	ones	(top).	

6/11/2015 18COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015

Example
A	typical	stack	region	as	it	looks	when	a	function	call	is	being	executed.	

void function (int a, int b, int c) {

char buffer1[5];

char buffer2[10];

}

int main()

{ function(10,20,30); }

the	function	stack	looks	like:

6/11/2015 19

buffer2
buffer1

20

30

10

RET
FP

TOP

BOTTOM

SP

FB

COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015

Buffer	Overflow
int main () {

/* hold only 10 integers */

int buffer[10];

/* but, I put an integer elsewhere */

buffer[20] = 10;

}

Above	C	program	attempts	to	write	beyond	the	allocated	memory	of	
the	buffer
◦ which	might	result	 in	unexpected	 behavior

6/11/2015 20COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015

Buffer	Overflow:	the	Details
Consider	another	C	example:	

void function (char *str) {

char buffer[16];

strcpy (buffer, str);

}

int main () {

char *str = "I am longer than 16 bytes";

function(str);

}

6/11/2015 21COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015

Buffer	Overflow:	the	Details

6/11/2015 22

buffer

RET
FPSP

FB

RET
FPSP

FB

buffer

I

a
m
l
on
g
er

t
ha
n
 1
6
 b
y
te
s

Return	Address	is	over-
written

COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015

Buffer	Overflow:	the	Details
Program	Crashes
◦ A	string	(str)	of	26	bytes	has	been	copied	to	a	buffer	(buffer)	of	only	16	bytes.	
◦ Copy	the	string	without	bound-checking	with	“strcpy”

Extra	bytes	run	past	the	buffer	and	overwrites	 the	space	allocated	for	
the	FP,	return	address,	…		

Corrupts	the	process	stack
◦ Unknown	instruction	code	is	executed

6/11/2015 23COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015

Buffer	Overflow:	the	Details
Use	strncpy	to	avoid	the	problem.	

This	classic	example	shows	that	a	buffer	overflow	can	overwrite	a	
function's	return	address,	which	in	turn	can	alter	the	program's	
execution	path.	

Recall	that	a	function's	return	address	is	the	address	of	the	next	
instruction	in	memory,	which	is	executed	 immediately	after	 the	function	
returns.

6/11/2015 24COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015

Overwriting	Function’s	Return	
Addresses
Intelligent	hacker	can	spawn	a	shell	by	jumping	the	execution	path	to	
such	code.	

But,	what	if	there	is	no	such	code	in	the	program	to	be	exploited?	
◦ Place	the	code	in	the	buffer's	overflowing	area.	

Overwrite	 the	return	address	 so	it	points	back	to	the	buffer	and	
executes	 the	intended	code.	

Such	code	can	be	inserted	 into	the	program	using	environment	
variables	or	program	input	parameters.	

6/11/2015 25COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015

Buffer	Overflow	–Technical	
Details
Function	Execution

Overwriting	RET

Execve()	 and	syscall

Running	Shell	Code

Using	IP	Relative	Addressing

Writing	an	Exploit	and	its	Difficulties

6/11/2015 26COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015

The	Stack	Region
The	Stack	Pointer	(SP)	points	to	the	top	of	the	stack

The	bottom	of	the	stack	is	at	a	fixed	address

CPU	implements	instructions	to	PUSH	onto	and	POP	off	of	the	stack.

6/11/2015 27COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015

Function	Execution
example1.c:
void function(int a, int b, int c) {

char buffer1[5];

char buffer2[10];

}

void main() {

function(1,2,3);

}

To	understand	what	a	program	does	to	call	function()	we	compile	it	with	gcc	
using	the	-S	switch	to	generate	assembly	code	output:
$	gcc	-S	-o	example1.s	example1.c

6/11/2015 28COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015

Example1.c
By	looking	at	the	assembly	language	output,	the	call	to	function()	 is	
translated	to:

pushl $3

pushl $2

pushl $1

call function

This	pushes	the	3	arguments	to	function	backwards	into	the	stack,	and	
calls	function().

'call'	pushes	the	instruction	pointer	(IP)	onto	the	stack.
◦ Saved	IP	is	the	return	address	(RET)

6/11/2015 29COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015

Example1.c
The	first	things	done	in	function	are:

pushl %ebp

movl %esp,%ebp

subl $20,%esp

This	pushes	EBP,	 the	frame	pointer,	onto	the	stack.		

Copies	the	current	SP	onto	EBP,	making	it	the	new	FP	pointer.		

Saved	FP	pointer	is	SFP.		

Allocates	space	for	the	local	variables	by	subtracting	their	size	from	SP	
(why	20?)

6/11/2015 30COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015

Example	2	– Overwriting	RET
void function(int a, int b, int c) {

char buffer1[5];

char buffer2[10];

int *ret;

ret = buffer1 + 12;

(*ret) += 8;

}

void main() {

int x;

x = 0;

function(1,2,3);

x = 1;

printf("%d\n",x);

}

6/11/2015 31COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015

Example	2
Modify	our	first	example	so	that	it	overwrites	 the	return	address
◦ demonstrate	how	we	can	make	it	execute	arbitrary	code.		

Just	before	buffer1[]	on	the	stack	is	SFP,	and	before	it,	is	the	
return	address.
That	is	4	bytes	pass	the	end	of	buffer1[].
Buffer1[]	is	really	2	word	so	its	8	bytes	long.	So	the	return	address	
is	12	bytes	from	the	start	of	buffer1[].
Modify	the	return	value	in	such	a	way	that	the	assignment	
statement	'x	=	1;'	after	the	function	call	will	be	jumped.		
To	do	so	we	add	8	bytes	to	the	return	address.
◦ How	do	we	know	it	is	8	bytes	to	skip?

6/11/2015 32COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015

GDB
GDB	is	a	debugger/disassembler

gdb a.out

(gdb) disassemble main

Dump of assembler code for function main:

0x8000490 <main>: pushl %ebp

0x8000491 <main+1>: movl %esp,%ebp

0x8000493 <main+3>: subl $0x4,%esp

0x8000496 <main+6>: movl $0x0,0xfffffffc(%ebp)

0x800049d <main+13>: pushl $0x3

0x800049f <main+15>: pushl $0x2

0x80004a1 <main+17>: pushl $0x1

0x80004a3 <main+19>: call 0x8000470 <function>

0x80004a8 <main+24>: addl $0xc,%esp

0x80004ab <main+27>: movl $0x1,0xfffffffc(%ebp)

0x80004b2 <main+34>: movl 0xfffffffc(%ebp),%eax

0x80004b5 <main+37>: pushl %eax

0x80004b6 <main+38>: pushl $0x80004f8

0x80004bb <main+43>: call 0x8000378 <printf>

0x80004c0 <main+48>: addl $0x8,%esp

0x80004c3 <main+51>: movl %ebp,%esp

0x80004c5 <main+53>: popl %ebp

0x80004c6 <main+54>: ret

6/11/2015 33COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015

GDB
RET	was	0x8004a8

The	next	instruction	we	want	to	execute	 is	at	0x8004b2

0x8004b2	minus	0x8004a8	=	8

Notice	that
◦ Not	all	instructions	are	of	same	length
◦ Compiling	on	different	architecture	or	with	different	compiler	or	different	
compiler	options	will	generate	different	codes.

6/11/2015 34COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015

Running	Shell
Modified	the	flow	of	execution,	but	what	program	do	we	want	to	
execute?
◦ Spawn	a	shell:	 issue	other	commands.		

But	what	if	there	is	no	such	code	in	the	program	we	are	trying	to	
exploit?		How	can	we	place	arbitrary	instruction	into	its	address	space?		
◦ Place	the	code	with	are	trying	to	execute	in	the	buffer	we	are	overflowing
◦ Overwrite	the	return	address	so	it	points	back	into	the	buffer.

6/11/2015 35COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015

The	Shell	Code
A	simple	program	that	trigger	the	shell	is:

/* shellcode.c */

#include <stdio.h>

void main() {

char *name[2];

name[0] = "/bin/sh";

name[1] = NULL;

execve(name[0], name, NULL);

}

6/11/2015 36COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015

The	Shell	Code
#gcc -o shellcode -ggdb -static shellcode.c
#gdb shellcode
(gdb) disassemble main
Dump of assembler code for function main:
0x8000130 <main>: pushl %ebp
0x8000131 <main+1>: movl %esp,%ebp
0x8000133 <main+3>: subl $0x8,%esp
0x8000136 <main+6>: movl $0x80027b8,0xfffffff8(%ebp)
0x800013d <main+13>: movl $0x0,0xfffffffc(%ebp)
0x8000144 <main+20>: pushl $0x0
0x8000146 <main+22>: leal 0xfffffff8(%ebp),%eax
0x8000149 <main+25>: pushl %eax
0x800014a <main+26>: movl 0xfffffff8(%ebp),%eax
0x800014d <main+29>: pushl %eax
0x800014e <main+30>: call 0x80002bc <__execve>
0x8000153 <main+35>: addl $0xc,%esp
0x8000156 <main+38>: movl %ebp,%esp
0x8000158 <main+40>: popl %ebp
0x8000159 <main+41>: ret

6/11/2015 37COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015

The	Shell	Code
(gdb) disassemble __execve
Dump of assembler code for function __execve:
0x80002bc <__execve>: pushl %ebp
0x80002bd <__execve+1>: movl %esp,%ebp
0x80002bf <__execve+3>: pushl %ebx
0x80002c0 <__execve+4>: movl $0xb,%eax
0x80002c5 <__execve+9>: movl 0x8(%ebp),%ebx
0x80002c8 <__execve+12>: movl 0xc(%ebp),%ecx
0x80002cb <__execve+15>: movl 0x10(%ebp),%edx
0x80002ce <__execve+18>: int $0x80
0x80002d0 <__execve+20>: movl %eax,%edx
0x80002d2 <__execve+22>: testl %edx,%edx
0x80002d4 <__execve+24>: jnl 0x80002e6 <__execve+42>
0x80002d6 <__execve+26>: negl %edx
0x80002d8 <__execve+28>: pushl %edx
0x80002d9 <__execve+29>: call 0x8001a34 <__normal_errno_location>
0x80002de <__execve+34>: popl %edx
0x80002df <__execve+35>: movl %edx,(%eax)
0x80002e1 <__execve+37>: movl $0xffffffff,%eax
0x80002e6 <__execve+42>: popl %ebx
0x80002e7 <__execve+43>: movl %ebp,%esp
0x80002e9 <__execve+45>: popl %ebp
0x80002ea <__execve+46>: ret
0x80002eb <__execve+47>: nop
End of assembler dump.

6/11/2015 38COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015

The	Shell	Code:	Explanation
0x8000136 <main+6>: movl
$0x80027b8,0xfffffff8(%ebp)

Copy	the	value	0x80027b8	(the	address	of	the	string	"/bin/sh")	into	the	
first	pointer	of	name[].	This	is	equivalent	to:	name[0]	=	"/bin/sh";

0x800013d <main+13>: movl $0x0,0xfffffffc(%ebp)

Copy	the	value	0x0	(NULL)	into	the	seconds	pointer	of	name[].This	 is	
equivalent	to:	name[1]	=	NULL;

6/11/2015 39COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015

The	Shell	Code:	Explanation
The	actual	call	to	execve()	 starts	here

0x8000144 <main+20>: pushl $0x0

Push	the	arguments	to	execve()	 in	reverse	order	onto	the	stack	– start	
with	a	NULL.

0x8000146 <main+22>: leal 0xfffffff8(%ebp),%eax

Load	the	address	of	name[]	into	the	EAX	register.

0x8000149 <main+25>: pushl %eax

Push	the	address	of	name[]	onto	the	stack

6/11/2015 40COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015

The	Shell	Code:	Explanation
0x800014a <main+26>: movl 0xfffffff8(%ebp),%eax

Load	the	address	of	the	string	"/bin/sh"	into	the	EAX	register.

0x800014d <main+29>: pushl %eax

Push	the	address	of	the	string	"/bin/sh"	onto	the	stack.

0x800014e <main+30>: call 0x80002bc <__execve>

Call	the	library	procedure	execve().	 	The	call	instruction	pushes	the	IP	
onto	the	stack.

6/11/2015 41COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015

The	Shell	Code:	Explanation
0x80002bc <__execve>: pushl %ebp
0x80002bd <__execve+1>: movl %esp,%ebp
0x80002bf <__execve+3>: pushl %ebx

The	procedure	prelude

0x80002c0 <__execve+4>: movl $0xb,%eax

Copy	0xb	(11	decimal)	onto	the	stack.	This	is	the	index	into	the	syscall
table.		11	corresponds	 to	execve

0x80002c5 <__execve+9>: movl 0x8(%ebp),%ebx

Copy	the	address	of	"/bin/sh"	into	EBX

6/11/2015 42COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015

The	Shell	Code:	Explanation
0x80002c8 <__execve+12>: movl 0xc(%ebp),%ecx

Copy	the	address	of	name[]	into	ECX

0x80002cb <__execve+15>: movl 0x10(%ebp),%edx

Copy	the	address	of	the	null	pointer	into	%edx

0x80002ce <__execve+18>: int $0x80

Change	into	kernel	mode

6/11/2015 43COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015

The	Shell	Code:	Summary
All	we	need	to	do	is:
1. Have	the	null	terminated	string	"/bin/sh"	somewhere	 in	

memory
2. Have	the	address	of	the	string	"/bin/sh"	somewhere	 in	

memory	 followed	by	a	null	 long	word
3. Copy	0xb	into	the	EAX	register
4. Copy	the	address	of	the	address	of	the	string	"/bin/sh"	into	

the	EBX	register
5. Copy	the	address	of	the	string	"/bin/sh"	into	the	ECX	

register
6. Copy	the	address	of	the	null	long	word	into	the	EDX	

register
7. Execute	the	int $0x80	instruction

6/11/2015 44COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015

The	Shell	Code:	continue
But	what	if	the	execve()	 call	fails	for	some	reason?		
◦ Program	continues	fetching	instructions	from	the	stack,	which	may	contain	
random	data!

◦ The	program	will	most	likely	core	dump.	
◦ Hacker	may	want	the	program	to	exit	cleanly	if	the	execve syscall fails.
◦ Sdd an	exit	syscall after	the	execve syscall.	(Details	of	the	exit()	syscall is	omitted	here.)

6/11/2015 45COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015

The	remaining	problem(s)
The	problem	is	that	we	don't	know	where	 in	the	memory	space	of	the	
program	we	are	trying	to	exploit	the	code	(and	the	string	that	follows	it)	
will	be	placed.

We	need	IP	relative	addressing	 instructions
◦ JMP	and	Call

6/11/2015 46COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015

Now	the	code	becomes
jmp offset-to-call # 2 bytes

popl %esi # 1 byte

movl %esi,array-offset(%esi) # 3 bytes

movb $0x0,nullbyteoffset(%esi) # 4 bytes

movl $0x0,null-offset(%esi) # 7 bytes

movl $0xb,%eax # 5 bytes

movl %esi,%ebx # 2 bytes

leal array-offset,(%esi),%ecx # 3 bytes

leal null-offset(%esi),%edx # 3 bytes

int $0x80 # 2 bytes

movl $0x1, %eax # 5 bytes

movl $0x0, %ebx # 5 bytes

int $0x80 # 2 bytes

call offset-to-popl # 5 bytes

.string \”/bin/sh\” # 8 bytes

6/11/2015 47

0x26

-0x2b

COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015

Testing	it
char shellcode[] =

"\xeb\x2a\x5e\x89\x76\x08\xc6\x46\x07\x00\xc7\x46\x0c\x00\x00\x00"

"\x00\xb8\x0b\x00\x00\x00\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80"

"\xb8\x01\x00\x00\x00\xbb\x00\x00\x00\x00\xcd\x80\xe8\xd1\xff\xff"

"\xff\x2f\x62\x69\x6e\x2f\x73\x68\x00\x89\xec\x5d\xc3";

void main() {

int *ret;

ret = (int *)&ret + 2;

(*ret) = (int)shellcode;

}

6/11/2015 48COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015

Testing	it
gcc -o testsc testsc.c

./testsc

exit

#

It	works!	But	there	is	an	obstacle.

In	most	cases	we'll	be	trying	to	overflow	a	character	buffer:	NULL	byte	
problem

6/11/2015 49COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015

Examples	to	avoid	null-byte
Problem instruction: Substitute with:

--

movb $0x0,0x7(%esi) xorl %eax,%eax

molv $0x0,0xc(%esi) movb %eax,0x7(%esi)

movl %eax,0xc(%esi)

--

movl $0xb,%eax movb $0xb,%al

--

movl $0x1, %eax xorl %ebx,%ebx

movl $0x0, %ebx movl %ebx,%eax

inc %eax

--

6/11/2015 50COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015

Writing	an	Exploit
Use	command	line	parameter	passing	as	the	means	to	send	data.

6/11/2015 51

Attacker’s
program

Vulnerable
program receives

data to buffer and
corrupts its own

RET field

Buffer
data
send
over a
channel

buffer

COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015

Some	difficulties
We	need	to	know	where	is	the	buffer	 so	that	the	RET	field	can	be	
replaced	with	that	address.

We	need	to	have	an	idea	of	how	long	the	buffer	 is	so	that	we	can	know	
where	is	the	RET	field	and	where	to	stop	filling	up	the	buffer.

Let’s	do	some	guessing.

6/11/2015 52COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015

A	common	trick
Add	a	prefix	of	NOP	instructions	the	exploit	code

RET	field	need	not	exactly	equal	to	the	beginning	address	of	the	buffer
◦ As	long	as	the	RET	field	is	changed	to	fall	into	any	one	of	the	NOPs,	the	
shellcode	program	will	be	triggered.

That	make	the	guessing	much	easier

6/11/2015 53COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015

Solution	against	Buffer	
Overflow
Better/Secure	 Program	code

Secure	Framework	and	API

Address	Space	Layout	Randomization

Data	Execution	Prevention

6/11/2015 COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015 54

Security	Considerations	 in	
SDLC

6/11/2015 55

From	CISSP	All-in-one	exam	6th ed.

COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015

The	Real	World
Systems	Development	Life	Cycle
◦ Organisations	understaffed,	wear	too	many	hats
◦ Separation	of	duties	seldom	complete
◦ Infosec	seldom	involved	in	initial	stages	of	development
◦ Risks	seldom	adequately	assessed
◦ Exposure	points	and	controls	seldom	adequately	determined
◦ Code	checks	are	often	skipped
◦ Approvals	are	often	perfunctory
◦ Development	process	continues	without	formal	approval

◦ Few	limits	on	access	to	program	code
◦ Change	control	for	programs	only

6/11/2015 COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015 56

Secure	Coding	
Practices

6/11/2015 COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015 57

Coding	Standard	for	Java	
(Java	Rules	from	CERT)

Input	Validation	and	Data	Sanitization

Leaking	Sensitive	Data

Leaking	Capabilities

Denial	of	Service

Serialization

Concurrency,	Visibility	and	Memory

Privilege	Escalation

Input	Validation	and	Data	
Sanitization

Methods	to	prevent	Injection	Attacks
◦ Validation
◦ Sanitization
◦ Canonicalization	and	Normalization

Leaking	Sensitive	Data
Java’s	type	safety	means	that	fields	that	are	declared	private or	protected or	that	have	default	
(package)	protection	should	not	be	globally	accessible.	

Sensitive	information	must	not	be	stored	in	a	public field	because	it	could	be	compromised	by	
anyone	who	can	access	the	JVM	running	the	program

Methods	to	prevent	leaking	sensitive	data
◦ OBJ01-J.	Declare	data	members	as	private	and	provide	accessible	wrapper	methods
◦ ERR01-J.	Do	not	allow	exceptions	to	expose	sensitive	information
◦ FIO13-J.	Do	not	log	sensitive	information	outside	a	trust	boundary
◦ IDS03-J.	Do	not	log	unsanitized user	input
◦ MSC03-J.	Never	hard	code	sensitive	information
◦ SER03-J.	Do	not	serialize	unencrypted,	sensitive	data
◦ SER04-J.	Do	not	allow	serialization	and	deserialization	 to	bypass	the	security	manager
◦ SER06-J.	Make	defensive	copies	of	private	mutable	components	during	deserialization

Leaking	Capabilities
References	to	objects	whose	methods	can	perform	sensitive	operations	can	
serve	as	capabilities	that	enable	the	holder	to	perform	those	operations	(or	
to	request	that	the	object	perform	those	operations	on	behalf	of	the	
holder).	
Consequently,	such	references	must	themselves	be	treated	as	sensitive	data	
and	must	not	be	leaked	to	untrusted	code
Rules	to	prevent	leaking	capabilities
◦ ERR09-J.	Do	not	allow	untrusted	code	to	terminate	the	JVM
◦ MET04-J.	Do	not	increase	the	accessibility	of	overridden	or	hidden	methods
◦ OBJ08-J.	Do	not	expose	private	members	of	an	outer	class	from	within	a	nested	
class

◦ SEC00-J.	Do	not	allow	privileged	blocks	to	leak	sensitive	information	across	a	trust	
boundary

◦ SEC04-J.	Protect	sensitive	operations	with	security	manager	checks
◦ SER08-J.	Minimize	privileges	before	deserializing from	a	privileged	context

Denial	of	Service
Denial-of-service	 (DoS)	attacks	attempt	to	make	a	computer	resource	
unavailable	or	insufficiently	available	to	its	intended	users.	

There	are	several	methods	of	causing	a	denial	of	service:
◦ Vulnerability	attacks	involve	sending	a	few	well-crafted	packets	that	take	
advantage	of	an	existing	vulnerability	in	the	target	machine.

◦ Resource	exhaustion	attacks	that	consume	computational	resource	such	as	
bandwidth,	memory,	disk	space,	or	processor	time.

◦ Algorithmic	attacks	(such	as	on	hash	functions)	by	injecting	values	that	force	
worst-case	conditions	to	exist.

◦ Bandwidth	consumption	attacks	that	consume	all	available	network	
bandwidth	of	the	victim.

Denial	of	Service	(Cont.)
Possible	DoS	Attack	on	Java	Program	:
◦ Inserting	many	keys with	the	same	hash	code	into	a	hash	table,	consequently	
triggering	worst-case	performance	(O(n2))	rather	than	average-case	
performance	(O(n))

◦ Initiating	many	connections	where	the	server	allocates	significant	resources
for	each	(the	traditional	SYN	flood	attack,	for	example)

◦ “Billion	 laughs	attack,”	whereby	XML	entity	expansion	causes	an	XML	
document	to	grow	dramatically	during	parsing.	This	can	be	mitigated	by	
setting	the	XMLConstants.	FEATURE_SECURE_PROCESSING	feature	to	
enforce	reasonable	 limits

Source:	Secure	Coding	Guidelines	for	the	Java	Programming	Language

lol9
l0l8	l0l8	l0l8	 l0l8 l0l8 l0l8 l0l8 l0l8 l0l8 l0l8

lol7	 lol7	lol7	 lol7	lol7	 lol7	lol7	 lol7	………	lol7	lol7	lol7	 lol7	lol7	 lol7	lol7	 lol7
.
.
.

<1	KB	block 109 =	a	billion	"lol"s
~	3	GB

Denial	of	Service	(Cont.)
Rules	to	prevent	DoS	resulting	from	resource	exhaustion:
◦ FIO03-J.	Remove	temporary	files	before	termination
◦ FIO04-J.	Release	resources	when	they	are	no	longer	needed
◦ FIO07-J.	Do	not	let	external	processes	block	on	IO	buffers
◦ FIO14-J.	Perform	proper	cleanup	at	program	termination
◦ IDS04-J.	Safely	extract	files	from	ZipInputStream
◦ MET12-J.	Do	not	use	finalizers
◦ MSC04-J.	Do	not	leak	memory
◦ MSC05-J.	Do	not	exhaust	heap	space
◦ SER10-J.	Avoid	memory	and	resource	leaks	during	serialization
◦ TPS00-J.	Use	thread	pools	to	enable	graceful	degradation	of	service	during	
traffic	bursts

◦ TPS01-J.	Do	not	execute	interdependent	tasks	in	a	bounded	thread	pool

Denial	of	Service	(Cont.)
Some	denial	of	service	attacks	operate	by	attempting	to	induce	
concurrency-related	problems	such	as	thread	deadlock,	thread	starvation,	
and	race	conditions.
Rules	regarding	prevention	of	denial	of	service	attacks	resulting	from	
concurrency	issues
◦ LCK00-J.	Use	private	final	lock	objects	to	synchronize	classes	that	may	interact	
with	untrusted	code

◦ LCK01-J.	Do	not	synchronize	on	objects	that	may	be	reused
◦ LCK07-J.	Avoid	deadlock	by	requesting	and	releasing	locks	in	the	same	order
◦ LCK08-J.	Ensure	actively	held	locks	are	released	on	exceptional	conditions
◦ LCK09-J.	Do	not	perform	operations	that	can	block	while	holding	a	lock
◦ LCK11-J.	Avoid	client-side	locking	when	using	classes	that	do	not	commit	to	their	
locking	strategy

◦ THI04-J.	Ensure	that	threads	performing	 blocking	operations	can	be	terminated
◦ TPS02-J.	Ensure	that	tasks	submitted	to	a	thread	pool	are	interruptible
◦ TSM02-J.	Do	not	use	background	 threads	during	class	initialization

Denial	of	Service	(Cont.)
Other	DoS	Attack
◦ Rules	to	prevent	other	DoS	Attack
◦ ERR09-J.	Do	not	allow	untrusted	code	to	terminate	the	JVM
◦ IDS00-J.	Prevent	SQL	Injection
◦ IDS06-J.	Exclude	unsanitized user	input	from	format	strings
◦ IDS08-J.	Sanitize	untrusted	data	included	in	a	regular	expression

Precursors	to	DoS
◦ Additional	rules	to	address	vulnerabilities	 that	can	enable	denial	of	service	
attacks
◦ ERR01-J.	Do	not	allow	exceptions	to	expose	sensitive	information
◦ ERR02-J.	Prevent	exceptions	while	logging	data
◦ EXP01-J.	Do	not	use	a	null	in	a	case	where	an	object	is	required
◦ FIO00-J.	Do	not	operate	on	files	in	shared	directories
◦ NUM02-J.	Ensure	that	division	and	remainder	operations	do	not	result	in	divide-by-zero	errors

Serialization
Serialization	also	allows	for	Java	method	calls	to	be	transmitted	over	a	network	for	
Remote	Method	 Invocation	(RMI)	wherein	objects	are	marshalled (serialized),	
exchanged	between	distributed	virtual	machines,	and	unmarshalled (deserialized).	

Serialization	is	also	extensively	used	in	Java	Beans.

Serialization	captures	all	the	fields	of	an	object	including	 the	non-public	fields	that	
are	normally	inaccessible,	provided	 that	the	object's	class	implements	 the	
Serializable interface.	

If	the	byte	stream	to	which	the	serialized	values	are	written	is	readable,	the	values	of	
the	normally	 inaccessible	fields	may	be	deduced.

Introducing	a	security	manager	fails	to	prevent	the	normally	inaccessible	fields	from	
being	serialized	and	deserialized (although	 permission	must	be	granted	to	write	to	
and	read	from	the	file	or	network	if	the	byte	stream	is	being	stored	or	transmitted).

When	a	Serializable class	fails to	implement	a	serialized	function,	 it	is	serialized	using	
a	'default'	method,	which	serializes	all	its	public,	protected,	and	private	fields,	except	
for	those	marked	transient.

Concurrency,	Visibility	and	
Memory
Memory	that	can	be	shared	between	threads	is	called	shared	memory	
or	heap	memory

When	using	synchronization,	it	is	unnecessary	 to	declare	the	variable	y	
as	volatile.	Synchronization	involves	acquiring	a	lock,	performing	
operations,	and	then	releasing	the	lock

Use	java.util.concurrent	package
◦ Volatile	variables	are	useful	for	guaranteeing	visibility.	However,	they	are	
insufficient	for	ensuring	atomicity.

◦ The	java.util.concurrent	package	provides	the	Executor	framework	which	
offers	a	mechanism	for	executing	tasks	concurrently.	A	task	is	a	logical	unit	of	
work	encapsulated	by	a	class	that	implements	 Runnable	or	Callable.	

◦ The	java.util.concurrent	package	provides	the	ReentrantLock	class	that	has	
additional	 features	that	are	missing	from	intrinsic	locks.

Principle	of	Least	Privilege
Occasionally	a	system	will	have	components,	most	of	which	require	only	
a	base	set	of	privileges,	but	a	few	require	more	privileges	 than	the	base	
set;	these	are	said	to	run	with	elevated	privileges

Methods	to	prevent	the	elevation	issues
◦ Only	code	that	requires	elevated	privileges	should	be	signed;	other	code	
should	not	be	signed.

◦ Use	Java's	flexible	security	model	allows	the	user	to	grant	additional	
permissions	 to	applications	by	defining	a	custom	security	policy

◦ Rules:
◦ ENV03-J.	Do	not	grant	dangerous	combinations	of	permissions
◦ SEC00-J.	Do	not	allow	privileged	blocks	to	leak	sensitive	information	across	a	trust	boundary
◦ SEC01-J.	Do	not	allow	tainted	variables	in	privileged	blocks

Security	Managers
A	SecurityManager is	a	Java	class	that	defines	a	security	policy	for	Java	
code.	This	policy	specifies	actions	that	are	unsafe	or	sensitive.	Any	actions	
not	allowed	by	the	security	policy	cause	a	SecurityException to	be	thrown.

The	applet	security	manager	is	used	to	manage	all	Java	applets.	It	denies	
applets	all	but	the	most	essential	privileges.

Webservers,	such	as	Tomcat	and	Websphere,	use	this	facility	to	isolate	
trojan servlets	and	malicious	JSP	code,	as	well	as	to	protect	sensitive	system	
resources	from	inadvertent	access.

The	security	manager	is	closely	tied	to	the	AccessController class.	The	
former	is	used	as	a	hub	for	access	control	whereas	the	latter	is	the	actual	
implementer	of	the	access	control	algorithm.	

The	constructor	of	class	java.io.FileInputStream throws	a	SecurityException
if	the	caller	does	not	have	the	permission	to	read	a	file.

Class	Loader
The	java.lang.ClassLoader class	and	its	descendent	classes	are	the	
means	by	which	new	code	is	dynamically	loaded	into	the	JVM.	

Every	class	provides	a	link	to	the	ClassLoader that	loaded	it;	
furthermore	every	class	loader	class	also	has	its	own	class	that	loaded	
it,	on	down	to	a	single	'root'	class	loader.

All	class	loaders	inherit	from	SecureClassLoader,	 which	itself	inherits	
from	ClassLoader.	SecureClassLoader performs	security	checks	on	its	
members,	as	do	its	descendents.	

It	defines	a	getPermissions()	method,	which	indicates	the	privileges	
available	to	classes	loaded	by	the	class	loader

Enterprise	Security	API	(ESAPI)
ESAPI	(The	OWASP	Enterprise	Security	API)	is	a	free,	open	source,	web	application	
security	control	library	that	makes	it	easier	for	programmers	to	write	lower-risk	
applications.

The	ESAPI	libraries	are	designed	 to	make	it	easier	for	programmers	to	retrofit	
security	into	existing	applications.

Basic	design
◦ With	a	set	of	security	control	interfaces
◦ With	a	reference	implementation	for	each	security	control

Currently	ESAPI	supported	 the	following:
◦ Java
◦ .NET
◦ Classic	ASP
◦ PHP
◦ ColdFusion
◦ Python
◦ Javascript

6/11/2015 COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015 72

Address	space	layout	
randomization	(ASLR)
Attackers	trying	to	execute	return-to-libc attacks	must	locate	the	code	
to	be	executed,	while	other	attackers	trying	to	execute	shellcode
injected	on	the	stack	have	to	find	the	stack	first.

Built-in	apps	use	ASLR	to	ensure	that	all	memory	regions	are	
randomized	upon	launch.	

Randomly	arranging	the	memory	addresses	of	executable	code,	system	
libraries,	and	related	programming	constructs	reduces	 the	likelihood	of	
many	sophisticated	exploits.

Security	is	increased	by	increasing	the	search	space.	Thus,	address	
space	randomization	is	more	effective	when	more	entropy	is	present	in	
the	random	offsets.	

6/11/2015 COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015 73

Data	Execution	Prevention	
(DEP)
Data	Execution	Prevention	(DEP)	is	a	security	feature	 that	can	help	
prevent	damage	from	viruses	and	other	security	threats	by	preventing	
the	program	executed	 from	memory	space	reserved	 for	specific	
purpose	or	data	space.	
◦ Security	features	included	 in	Operating	Systems
◦ It	marks	areas	of	memory	as	either	"executable"	or	"nonexecutable",	and	
allows	only	data	in	an	"executable"	area	to	be	run	by	programs,	services,	
device	drivers,	etc

6/11/2015 COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015 74

Application	
Security

6/11/2015 75COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015

What	is	Application
From	an	holistic	view	– whatever	a	program	or	system	that	helps	to	
complete	some	tasks	pre-defined	by	users

6/11/2015 76COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015

From	IT	Control	Objectives	for	
Sarbanes-Oxley,	3rd Edition

Definition	of	Application	
Security
Definition	of	Application	Security:
◦ Application	security	is	the	use	of	software,	hardware,	and	procedural	
methods	to	protect	applications	from	external	threats

◦ Application	security	(short:	AppSec)	encompasses	measures	taken	
throughout	the	code's	life-cycle	to	prevent	gaps	in	the	security	policy	of	an	
application	or	the	underlying	system	(vulnerabilities)	through	flaws	in	the	
design,	development,	deployment,	upgrade,	or	maintenance	 of	the	
application.	 (wikipedia)

6/11/2015 COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015 77

Threats	by	Application	
Vulnerability	Category
According	to	the	Microsoft’s	Improving	Web	Application	Security:	Threats	
and	Countermeasures	Book	(https://msdn.microsoft.com/en-
us/library/ms994921.aspx)

6/11/2015 COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015 78

Category Threats	/	Attacks
Input	Validation Buffer	overflow;	cross-site	scripting;	SQL	injection;	canonicalization

Software	Tampering
Attacker	modifies	an	existing	application's	runtime	behavior	to	perform	unauthorized	actions;	
exploited	via	binary	patching,	code	substitution,	or	code	extension

Authentication Network	eavesdropping	;	Brute	force	attack;	dictionary	attacks;	cookie	replay;	credential	theft
Authorization Elevation	of	privilege;	disclosure	of	confidential	data;	data	tampering;	luring	attacks

Configuration	
management

Unauthorized	access	to	administration	interfaces;	unauthorized	access	to	configuration	stores;	
retrieval	of	clear	text	configuration	data;	lack	of	individual	accountability;	over-privileged	process	and	
service	accounts

Sensitive	information Access	sensitive	code	or	data	in	storage;	network	eavesdropping;	code/data	tampering

Session	management Session	hijacking;	session	replay;	man	in	the	middle
Cryptography Poor	key	generation	or	key	management;	weak	or	custom	encryption
Parameter	
manipulation Query	string	manipulation;	form	field	manipulation;	cookie	manipulation;	HTTP	header	manipulation
Exception	
management Information	disclosure;	denial	of	service

Auditing	and	logging
User	denies	performing	an	operation;	attacker	exploits	an	application	without	trace;	attacker	covers	
his	or	her	tracks

Securing	of	applications
Application	Security	by	Design
◦ Secure	Software	Development	Life	Cycle	(SDLC)
◦ Secure	Coding	Practices
◦ Enterprise	Security	API

Application	Security	by	Testing
◦ Penetration	testing	(Black	Box	Testing)
◦ Code	Analysis	(White	Box	Testing)

Application	Security	by	Prevention
◦ Application	Layer	Firewall
◦ Zero-day	virtual	patching

6/11/2015 COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015 79

Secure	SDLC

6/11/2015 COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015 80

Information	Lifecycle	Management	- Six	Major	
Phases	of	the	Data	Security	Lifecycle

6/11/2015 81

1. Data	creation
2. Storage

– Enforce	access	control
– Sensitive	data	should	be	encrypted

3. Data	usage
4. Information	Sharing
5. Archive
6. Deletion

DeletionArchiveInformation	
Sharing

Data	
UsageStorageCreation

COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015

Information	Lifecycle	
Management	– Data	Creation

6/11/2015 82

◦ Data	classification
◦ Assign	rights	to	facilitate	access	control	enforcement
◦ Default	deny	to	all	users	&	cloud	service	provider

DeletionArchiveInformation	
Sharing

Data	
UsageStorageCreation

COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015

Information	Lifecycle	
Management	– Data	Storage

6/11/2015 83

◦ Enforce	access	control
◦ Sensitive	data	should	be	encrypted
◦ Integrity
◦ Use	of	intermediate	/	temporary	storage	(!!!)
◦ Memory
◦ Cache
◦ Temporary	files

◦ Geolocation of	the	storage?
◦ Sometimes	it	matters

DeletionArchiveInformation	
Sharing

Data	
UsageStorageCreation

COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015

Information	Lifecycle	
Management	– Data	Usage

6/11/2015 84

◦ Availability
◦ Activity	monitoring
◦ Policy	enforcement
◦ Logical	controls

DeletionArchiveInformation	
Sharing

Data	
UsageStorageCreation

COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015

Information	Lifecycle	
Management	– Information	
Sharing

6/11/2015 85

◦ Data	Lost	Prevention	(DLP)	/	
content	based	data	protection

◦ Encryption
◦ Access	controls	(file	system,	
DBMS,	DMS)

◦ Activities	monitoring

DeletionArchiveInformation	
Sharing

Data	
UsageStorageCreation

COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015

Information	Lifecycle	
Management	– Data	Archive

6/11/2015 86

◦ Asset	management
◦ Retention	period
◦ Encryption	of	archived	data
◦ Protection	on	physical	
media

DeletionArchiveInformation	
Sharing

Data	
UsageStorageCreation

COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015

Information	Lifecycle	
Management	– Data	Deletion

6/11/2015 87

◦ Crypto-shredding
◦ Secure	deletion	/	disk	wiping
◦ e.g.	DOD_5220.22M	standard

◦ Degaussing	(for	magnetic	type	media)
◦ Physically	destroy	the	media
◦ How	the	cloud	service	provider	ensure	data	are	probably	deleted	 in	all	
parts	of	the	cloud?

DeletionArchiveInformation	
Sharing

Data	
UsageStorageCreation

COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015

System	or	Software	
Development	
Security

6/11/2015 88COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015

System	Development	Life	
Cycle
A	system	has	its	own	developmental	life	cycle,	which	is	made	up	of	the	
following	phases:
◦ initiation,	 (Feasibility	Study,	Requirements	Definition	and	System	Design)
◦ acquisition/development,	 (Development)
◦ implementation,	 (Implementation)
◦ operation/maintenance,	 and	(Post-Implementation)
◦ disposal

6/11/2015 89COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015

Software	Development	
Lifecycle
Industry	has	produced	a	number	of	SDLC	standards	that	you	can	adapt	
for	your	organization’s	processes	and	staffing	models:
◦ Building	Security	In	Maturity	Model	(BSIMM2)
◦ Software	Assurance	Maturity	Model	(SAMM)
◦ Systems	Security	Engineering	Capability	Maturity	Model	(SSE-CMM)	

BSIMM-V
Total	112	activities	categorized	into	4	groups

Governance:	strategy	and	metrics
◦ Planning,	assigning	roles	and	responsibilities,	 identifying	software	security	goals,	determining	budgets,	

identifying	metrics	and	gates.

Governance:	Compliance	and	Policy
◦ Identifying	controls	for	compliance	regimens,	developing	contractual	controls	(COTS	SLA),	setting	

organizational	policy,	auditing	against	policy.

Governance:	Training

Intelligence:	Attack	Models
◦ Threat	modeling,	abuse	cases,	data	classification,	technology-specific	attack	patterns.

Intelligence:	Security	Features	and	Design
◦ Security	patterns	for	major	security	controls,	middleware	frameworks	for	controls,	proactive	security	

guidance.

Intelligence:	Standards	and	Requirements
◦ Explicit	security	requirements,	recommended	COTS,	standards	for	major	security	controls,	standards	for	

technologies	in	use,	standards	review	board.

BSIMM-V
SSDL	TouchPoints:	Architecture	Analysis
◦ Capturing	software	architecture	diagrams,	applying	lists	of	risks	and	threats,	adopting	a	process	for	review,	

building	an	assessment	and	remediation	plan.

SSDL	TouchPoints:	Code	Review
◦ Use	of	code	review	tools,	development	of	customized	rules,	 profiles	for	tool	use	by	different	roles,	manual	

analysis,	ranking/measuring	results.

SSDL	TouchPoints:	Security	Testing
◦ Use	of	black	box	security	tools	in	QA,	risk	driven	white	box	testing,	application	of	the	attack	model,	code	

coverage	analysis.

Deployment:	Penetration	Testing
◦ Vulnerabilities	in	final	configuration,	feeds	to	defect	management	and	mitigation.

Deployment:	Software	Environment
◦ OS	and	platform	patching,	Web	application	firewalls,	installation	and	configuration	documentation,	

application	monitoring,	change	management,	code	signing.

Deployment:	Configuration	Management	and	Vulnerability	Management
◦ Patching	and	updating	applications,	version	control,	defect	tracking	and	remediation,	incident	handling.

ISO/IEC	21827
ISO/IEC	21827	(SSE-CMM	– ISO/IEC	21827)	is	an	International	Standard	
based	on	the	Systems	Security	Engineering	Capability	Maturity	Model	
(SSE-CMM)	developed	by	the	International	Systems	Security	
Engineering	Association	(ISSEA).	

ISO/IEC	21827	specifies	the	Systems	Security	Engineering	 - Capability	
Maturity	Model,	which	describes	 the	characteristics	essential	to	the	
success	of	an	organization's	security	engineering	process,	and	is	
applicable	to	all	security	engineering	organizations	including	
government,	 commercial,	and	academic.	

ISO/IEC	21827	does	not	prescribe	a	particular	process	or	sequence,	 but	
captures	practices	generally	observed	 in	industry.	

ISO/IEC	21827
The	model	is	a	standard	metric	for	security	engineering	practices	
covering	the	following:
◦ Project	lifecycles,	including	development,	operation,	maintenance,	and	
decommissioning	 activities

◦ Entire	organizations,	including	management,	organizational,	and	engineering	
activities

◦ Concurrent	interactions	with	other	disciplines,	 such	as	system	software	and	
hardware,	human	factors,	test	engineering;	system	management,	operation,	
and	maintenance

◦ Interactions	with	other	organizations,	including	acquisition,	system	
management,	certification,	accreditation,	and	evaluation.

ISO/IEC	21827
Capability	levels

ISO/IEC FDIS 21827:2007(E)

20 © ISO/IEC 2007 – All rights reserved

organization will then be able to use this process-specific information as a means to focus improvements to its
processes. The priority and sequence of the organization's activities to improve its processes should take into
account its business goals.

Business goals are the primary driver in interpreting a model such as the SSE-CMM®. But, there is a
fundamental order of activities and basic principles that drive the logical sequence of typical improvement
efforts. This order of activities is expressed in the common features and generic practices of the capability
level side of the SSE-CMM® architecture.

Figure 6 — Capability levels represent the maturity of security engineering organizations

The SSE-CMM® contains five levels, which are depicted in Figure 6, and detailed in Annex A.

6.3.5 Capability Dimension/Measurement Framework Mapping

The capability dimension of the SSE-CMM® and the measurement framework of ISO/IEC 15504-2 differ
somewhat in terms of structure, but very little in terms of the detail and intent. In the case of the SSE-CMM®
the capability dimension is organized into a number of “capability levels”. Each capability level is made up of a
number of “common features”, which in turn are made up of one or more “generic practices”; see Figure 10. In
the case of ISO/IEC 15504-2 measurement framework, this is made up of a number of “levels” with each level
consisting of a number of process attributes (PA)s. The table below sets out a mapping of the capability levels
of the SSE-CMM® to the levels of 155042.

Base
practices
performed Planning Performance

Disciplined
Performance

Tracking Performance

Verifying Performance

Defining a Standard
Process

Coordinate Practices

Perform a Defined
Process

Establishing
Measurable
Quality Goals

Objectively Managing
Performance

Improving Organizational
Capability

Improving Process
Effectiveness

0
Not

Performed

2
Planned &
Tracked

3
Well

 Defined

4
Qualitatively
Controlled

5
Continuously
Improving

1
Performed
Informally

ISO/IEC	21827
Security	Base	Practices
◦ Security	Engineering	Process	Area
◦ PA01	Administer	Security	Controls
◦ PA02	Assess	Impact
◦ PA03	Assess	Security	Risk
◦ PA04	Assess	Threat
◦ PA05	Assess	Vulnerability
◦ PA06	Build	Assurance	Argument
◦ PA07	Coordinate	Security
◦ PA08	Monitor	Security	Posture
◦ PA09	Provide	Security	Input
◦ PA10	Specify	Security	Needs
◦ PA11	Verify	and	Validate	Security

ISO/IEC	21827
Security	Base	Practices
◦ Project	and	Organization	Process	Area
◦ PA12	Ensure	Quality
◦ PA13	Manage	Configurations
◦ PA14	Manage	Project	Risk
◦ PA15	Monitor	and	Control	Technical	Effort
◦ PA16	Plan	Technical	Effort
◦ PA17	Define	Organization	Security	Engineering	Process
◦ PA18	Improve	Organization	Security	Engineering	Process
◦ PA19	Manage	Product	Line	Environment
◦ PA20	Manage	System	Engineering	Support	Environment
◦ PA21	Provide	Ongoing	Skills	and	Knowledge
◦ PA22	Coordinate	with	Suppliers

Software	Development	
Lifecycle

Planning	&	
Analysis

Design

Implementation

TestingDeployment

Operation	&	
Maintenance

Disposal

SDLC

Security	in	SDLC
Planning	&	Analysis	Phase
◦ Gathering	requirements	from	the	
stakeholders,	define	use	cases	and	
basic	prototyping.

◦ Security	in	this	phase:
• Define	security	requirements
• Data	classification
ü Availability
ü Confidentiality
ü Privacy

Planning	&	
Analysis

Design

Implementa
tion

TestingDeployment

Operation	&	
Maintenance

Disposal

SDLC

Security	in	SDLC
Planning	&	Analysis	Phase	under	the	web	application	security	standard
◦ Areas	to	be	identified
◦ User	Management
◦ Authentication
◦ Authorization
◦ Data	Confidentiality
◦ Data	Integrity
◦ Accountability
◦ Session	Management
◦ Transport	Security
◦ Tiered	System	Segregation
◦ Personal	Data	Privacy

◦ Understand	the	type	of	personal	data	the	application	will	handle
◦ Requirements	should	be	approved	by	system	owner

Security	in	SDLC
Design	Phase
◦ Translate	requirements	 into	
detailed	plans	&	designs.

◦ Security	in	this	phase:
• Develop	security	architecture
ü Access	controls
ü Authentication
ü Auditing
ü Other	security	controls

• Create	threat	models

Planning	&	
Analysis

Design

Implementa
tion

TestingDeploymen
t

Operation	&	
Maintenance

Disposal

SDLC

Security	in	SDLC
Design	Phase	under	the	web	application	security	standard

◦ Develop	against	vulnerabilities	 in	the	latest	OWASP	and	CWE/SANS	lists
◦ Functions	with	different	security	levels	should	run	in	different	servers
◦ Access	control	mechanism	shall	be	applied	to	location	with	sensitive	information	or	functionality
◦ Role	Based	Access	Control	and	the	principles	of	least	privilege	shall	be	applied
◦ Report	with	access	control	matrix	could	be	generated	from	application
◦ Encrypted	password	
◦ Strong	encryption	for	sensitive	information
◦ Systematic	encryption	key	length	used	should	be	at	least	128-bit	for	the	AES	encryption,	and	
asymmetric	encryption	key	length	shall	be	at	least	1024-bit	for	the	RSA	encryption	or	equivalent

Security	in	SDLC
Design	Phase	under	the	web	application	security	standard

◦ With	mechanism	to	protect	encryption	key
◦ Sensitive	information	transmitted	over	the	public	network	shall	be	encrypted
◦ Audit	mechanism	to	track	access	to	the	sensitive	information
◦ Track	all	administrator	actions
◦ Mechanism	to	ensure	the	integrity	of	audit	records
◦ User	interface	for	review	audit	information
◦ Track	suspicious	activities
◦ Log	information	shall	not	store	any	personal	data
◦ Anti-malware	software	should	be	installed
◦ Provide	function	for	identifying	and	securely	deleting	 the	stored	personal	data

Security	in	SDLC
Implementation	Phase
◦ Mainly	programming	tasks…

◦ Security	in	this	phase:

• Incorporate	security	best	
practices

• Development	security	testing	
plan

• Source	code	walkthrough
• Source	code	review

Planning	&	
Analysis

Design

Implementa
tion

TestingDeployment

Operation	&	
Maintenance

Disposal

SDLC

Security	in	SDLC
Implementation	Phase	under	the	web	application	security	standard

◦ Develop	under	secure	coding	guidelines,	eg.	OWASP	guidelines	and	CERT	Secure	Coding
◦ Input	data	shall	be	verified
◦ Input	validation	should	be	performed	both	on	the	server	side	as	well	as	on	the	client	 side
◦ When	code	is	running	with	error,	data	access	shall	be	denied	by	default
◦ Parameterized	input	with	stored	procedures	or	functions	should	be	used
◦ Any	session	identifiers	or	portion	of	valid	credentials	in	URLs	or	logs	should	not	be	exposed.
◦ Avoid	exposing	direct	object	references	to	users

Security	in	SDLC
Testing	Phase
◦ To	ensure	the	product	align	
with	the	design	/	requirements.

◦ Security	in	this	phase:
• Security	testing
• Application	 level
• System	configuration

• Issue	management

Planning	&	
Analysis

Design

Implementa
tion

TestingDeployment

Operation	&	
Maintenance

Disposal

SDLC

Security	in	SDLC
Testing	Phase	under	the	web	application	security	standard

◦ Develop	and	follow	a	security	test	plan
◦ Web	application	vulnerability	assessment	shall	be	conducted
◦ Any	security	flaws	identified	shall	be	corrected
◦ All	security	tests	and	corresponding	results	shall	be	formally	documented	in	form	of	test	plan,	
test	case	and	test	report

◦ Production	data	shall	not	be	used	for	testing	or	development	purposes

Security	in	SDLC
Deployment	Phase
◦ To	ensure	the	product	align	with	
the	design	/	requirements.

◦ Security	in	this	phase:
• Deployment	Plan
• Remove	unused	services,	functions	(eg.	
debug)	and	all	test	data	and	accounts

Planning	&	
Analysis

Design

Implementa
tion

TestingDeployment

Operation	&	
Maintenance

Disposal

SDLC

Security	in	SDLC
Deployment	Phase	under	the	web	application	security	standard

◦ Any	unused	services,	functions	or	procedure	in	the	servers	shall	be	removed
◦ All	the	test	data	and	test	accounts	shall	be	removed
◦ The	deployment	plan	shall	be	approved	by	system	owner	and	evaluated	by	relevant	
stakeholders	about	the	reasonableness	of	the	plan

◦ Deployment	Plan
◦ The	name	of	the	project
◦ The	result	of	the	test	performed	and	the	approval	of	system	owner
◦ The	target	data	and	duration	of	production	deployment
◦ The	impact	analysis
◦ Fallback	procedures

Security	in	SDLC
Operation	&	Maintenance	Phase
◦ Goes	into	production…
◦ Security	in	this	phase:

• Remove	/	reset	non-production	
configurations

• Revoke	access	of	developers	/	
testers

• Change	management

• Patch	management

• Monitoring

• Vulnerability	management

• Incident	/	Issue	management

Planning	&	
Analysis

Design

Implementa
tion

TestingDeployment

Operation	&	
Maintenance

Disposal

SDLC

Security	in	SDLC
Operation	and	Maintenance	Phase	under	the	web	application	security	
standard

◦ Established	procedure	for	requesting	and	approving	program/system	change
◦ Development	team	shall	provide	appropriate	documentation	created	throughout	the	
development	process	and	any	documentation	required	for	daily	support	of	the	web	
application/website

◦ Prepare	a	User	Manual	to	provide	guidance	and	instruction	on	how	to	use	the	functionalities	of	
the	new	systems

◦ Training	sessions	should	be	arranged	if	necessary
◦ Web	application	vulnerability	assessment	shall	be	conducted	after	major	enhancements	and	
changes

Security	in	SDLC
Disposal	Phase
◦ Retired	the	system

◦ Security	in	this	phase:

• Remove	sensitive	 information

Planning	&	
Analysis

Design

Implementa
tion

TestingDeployment

Operation	&	
Maintenance

Disposal

SDLC

Security	in	SDLC
Disposal	Phase	under	the	web	application	security	standard

◦ Sensitive	information	shall	not	be	kept	longer	than	required.

Security	Threats	and	IT	
Security

6/11/2015 COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015 114

From	InfoSec	Handbook	(2014)

Constructive
Security

Destructive
Security

IT	Service	Delivery

6/11/2015 115COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015

ITIL	Process

6/11/2015 116

http://www.mitsm.de/itil-wiki/process-descriptions-english/main-page

COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015

Operation	
Security

6/11/2015 COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015 117

Operational	Issues
Implementation	and	Operation
◦ Code	issues	– change	control
◦ Data	issues
◦ Access
◦ Integrity

◦ Personnel	issues

6/11/2015 COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015 118

Controls
Authorisation
◦ All	support	personnel	should	be	authorised

Risk	reduction	
◦ All	code	should	be	reviewed	prior	to	implementation	 –
change	management

Separation	of	duties
◦ Development	 staff	should	not	review,	implement	systems
◦ Development	 staff	should	not	support	production	data
◦ Development	 staff	should	not	manage	security	function

6/11/2015 119COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015

Change	
Management

6/11/2015 120COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015

Why	you	need	Change	Control	
Management?
Data	could	be	altered	during	change	control	management

Production	system	could	be	broken

Security	model	would	be	affected
◦ Changes	can	break	a	security	model

Needed	since	change	requester	does	not	understand	the	security	
implications	of	their	request

6/11/2015 121COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015

Overview
Security	should	be	considered	in	all	processes

Major-minor	Change	decisions
◦ For	major	changes,	extensive	security	analysis	should	be	considered
◦ Analysis	to	determine	security	requirements
◦ Original	analysis	and	system	changes	have	to	be	documented	throughout	the	life	cycle

◦ In	minor	change,	extensive	analysis	 it	not	required

Ensure	successful Change	Control	Process
◦ Enforce	of	security	during	the	application	and	software	development
◦ Develop	change	control	policy	&	procedures
◦ Define	change	request	forms

6/11/2015 122COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015

Change	Process
1. Convey	system	change	requests
◦ Requestor’s	name
◦ Date	of	request
◦ Date	of	the	change
◦ Priority
◦ Description
◦ Impact	analysis
◦ Reasons	– Benefits	analysis
◦ Expected	Results

2. Correspondence	 authorise	the	request

3. Test	the	changes

4. Accept	test	result

6/11/2015 COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015 123

Change	Process	(cont’d)
5. Raise	&	Authorise	Change	Form

6. Move	the	changes	into	the	production	environment

7. Close	and	File	the	request	permanently

8. Review	the	changes	periodically
◦ Checksums
◦ Digital	Signatures
◦ File	Comparison
◦ Version	Control	– Software	Library

6/11/2015 124COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015

Types	of	changes
Hardware	change

System	software	change

Application	software	change

System	documentation	and	operations	manuals

Emergency	program	change	

6/11/2015 125COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015

Parties	involved	in	change	
process
Requester
◦ Determine	the	scope	of	change
◦ Initiate	a	Change	Request
◦ Identify	reviewers	for	impact	analysis
◦ Prepare	implementation	 plan
◦ Prepare	fallback	plan

6/11/2015 126COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015

Parties	involved	in	change	
process
Approver
◦ Review	the	details	and	completeness	 of	Change	Request	
◦ Accept	or	reject	the	Change	Request	

Reviewer
◦ Analyze	change	impact		to	his/her	area	of	operations
◦ Review	the	Change	Request	

6/11/2015 127COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015

Change	Controls
Change	process
◦ Requestor	initiate	 change	with	change	details	 (e.g.	scheduled	date	and	time,	
implementation	 plan	and	fallback	plan)

◦ Change	approval	by	Initiator’s	management	
◦ Change	Control	assign	Reviewer	to	review	the	change
◦ Change	Control	ensure	Reviewer	accepted	the	change

6/11/2015 128COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015

Change	Controls
◦ Change	Control	monitor	implementation	 of	change
◦ If	the	change	failed,	start	implementation	 of	fallback	plan	
◦ Parties	involved	update	the	change	record	with	actual	change	details
◦ Change	Control	close	Change	Request

6/11/2015 129COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015

Change	Controls
Emergency	program	change:
◦ Program	errors	occur	during	non-office	hours	may	have	difficulties	 in	
following	the	normal	change	controls	

◦ During	emergency	program	change,	the	production	support	staff	is	allowed	
to	access	the	production	environment	(and	tools)	for	investigating	and	
rectifying	the	errors	by	using	an	emergency	profile

6/11/2015 130COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015

Change	Controls
◦ The	key	controls	over	emergency	program	change	are:
◦ The	emergency	password	should	be	kept	in	a	signed	and	sealed	envelope	and	hold	by	Computer	
Operations

◦ Logging	of	the	incident	and	the	person	who	has	retrieved	 the	emergency	profile
◦ Before	making	a	change,	a	temporary	fall-back	copy	of	the	program	or	data	should	be	taken	

6/11/2015 COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015 131

Change	Controls
◦ Program	changes	should	only	be	applied	to	the	emergency	libraries	
◦ The	before	and	after	change	data	record	should	be	printed	for	recording	and	reviewing
◦ The	emergency	password	must	be	changed	immediately	after	production	support
◦ The	normal	change	process	should	be	followed	for	moving	the	programs	in	the	emergency	
libraries	 to	the	production	libraries

6/11/2015 132COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015

Problem	
Management

6/11/2015 133COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015

Problem	Management
Problem	management	is	the	process	 to	detect,	record,	rectify	and	
report	of	computer	related	problems	
◦ Hardware	problem
◦ Program	problem
◦ Telecommunication	 problem

6/11/2015 134COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015

Problem	Management
Controls	in	recording	problems
◦ Problem	should	be	prioritized
◦ Data	inputted	 into	the	log	should	only	be	updated	but	not	deleted
◦ Audit	trail	of	the	person	who	has	updated	the	problem	log
◦ Outstanding	problem	should	be	closely	monitored	
◦ A	problem	can	only	be	closed	by	an	independent	person

6/11/2015 135COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015

Problem	Management
Escalation	Procedures
◦ Ensure	IS	management	 is	aware	of	the	unresolved	problem	after	a	pre-
defined	period	of	time.		

◦ Ensure	that	appropriate	actions	and	resources	are	allocated	to	resolving	the	
problem.		

6/11/2015 136COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015

Problem	Management
◦ Problem	escalation	 procedures	include:
◦ System	name
◦ Criteria	 for	escalation
◦ Name	and	contact	details	of	first	and	second	support
◦ Name	and	contact	details	of	the	support	staff ’s	manager

6/11/2015 137COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015

Capacity	Management
Planning	and	monitoring	of	computer	and	network	resources
◦ Application	server
◦ Database	server
◦ Data	storage	and	backup	system

Ensure	sufficient	computer	and	network	resources	are	available	when	
needed

Should	be	In-line	with	business	growth

6/11/2015 138COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015

Capacity	
Management

6/11/2015 139COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015

Capacity	Management
Two	dimensions
◦ Horizontal	capacity	planning
◦ Vertical	capacity	planning.	

Perform	at	least	on	a	yearly	basis

6/11/2015 140COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015

Capacity	Management
Capacity	planning	method
◦ Define	monitoring	components
◦ Define	utilization	threshold	for	the	monitoring	objects,	e.g.	CPU,	memory,	
disk	usage

◦ Collect	statistics	 by	automatic	process	if	possible	
◦ Generate	resources	utilization	report
◦ Understand	user’s	future	business	needs,	e.g.	business	 plan

6/11/2015 141COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015

Capacity	Management
◦ Assess	whether	the	sufficient	resources	for	supporting	future	business	
growth

◦ Initiate	and	coordinate	the	procurement	process	if	necessary

6/11/2015 142COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015

Controls…
Accountability
◦ No	access	should	be	permitted	directly	to	database
◦ Production	data	should	be	managed	by	users,	not	support	staff
◦ All	access	to	production	data	should	be	logged

Least	privilege
◦ Access	control
◦ Access	should	be	given	to	necessary	data	fields	only

Layered	defense
◦ Access	controls	should	be	used	in	addition	to	system	access

Configuration	 Management

6/11/2015 143COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015

Modes	of	Operation
Access	authority
◦ Supervisor	Vs	User

Integration	Levels
◦ Network	/	System
◦ Operating	System
◦ Database
◦ File	
◦ Service	Level	Agreement	(SLA)

6/11/2015 144COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015

The	Real	World
Implementation	and	Operation
◦ Organisations	understaffed,	wear	too	many	hats
◦ Separation	of	duties	seldom	complete
◦ Development	staff	often	support	production	systems
◦ IT	staff	often	maintain	production	data
◦ Access	 is	often	granted	on	basis	of	“least	effort”

6/11/2015 145COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015

Security	Risk	Assessment

6/11/2015 COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015 146
146

146

Requirement
Study & Situation

Analysis

Document
Review

Survey &
Interview

Risk
Analysis Vulnerability Scan Configuration

Review

Reporting
&

Briefing

Security
Enhancement

Implementation

Penetration	Testing	
(Methodology)

6/11/2015 COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015 147

Planning	&	
Preparation Enumerations

Vulnerability	
scanning	and	
OWASP	Top	10	

Test

Other	Web	
Application	Attack	

Test

Analyisis	&	
Reporting

Test	Execution

Penetration	Testing	(Details)

6/11/2015 COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015 148

User	Logon	Test User	Cookie	Session	
Test

User	authorization	
bypass	Test URL	manipulation	Test

SQL	Injection	Test Improper	handling	Test

Other	Web	Application	Test	/	OWASP	
Top	10	test

Automatic	
Scanning

Manual	Penetration	Test	&	
Exploitation

Automated	Scan	vs
Penetration	Test
Automated	scanning	under	the	context	of	web	application	security	
testing	usually	consist	of	running	a	web	application	security	scanner	
against	the	web	application

Manual	penetration	testing	involves	a	penetration	 tester	performing	
tests	on	the	web	application	using	a	manual	approach

Information	
Gathering

Automated	
Vulnerability	
Scanning

Manual	
Penetration	
Testing

Analysing	and	
Reporting

Caption:
A	penetration	testing	process.	
Usually	both	automated	scanning	
and	manual	penetration	tests	will	
be	utilized.

Automated	Scan	vs
Penetration	Test
AUTOMATED	SCAN

Pro:
◦ Covers	a	large	portion	of	the	web	
application	with	limited	 effort

◦ Excel	at	finding	vulnerabilities	 that	
are	easy	to	detect

Con:
◦ Accuracy	depends	on	the	built-in	
test	cases

◦ Does	not	do	well	in	areas	that	
incorporate	human	log,	e.g.:
◦ Access	privilege	problems
◦ Business	logic	problems
◦ Sufficiency	of	CAPTCHA

MANUAL	PENETRATION	TEST

Pro:
◦ Manual	testing	allows	hacker	to	
build	complex	test	cases,	
customizing	to	different	test	
scenarios

◦ Excel	at	identifying	access	privilege	
problems

Con:
◦ Usually	performed	on	risk-based	
basis	due	to	limited	time

◦ Does	not	perform	well	to	cover	
large	portion	of	web	application

Secure	Code	Review

6/11/2015 COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015 151

Application Code Review:
authentication, encryption,

input validation,
confidential and sensitive

data storage modules

Static Application Code
Review

Dynamic Application
Review

Static	Application	Code	Review
Source	code	reviews	are	an	essential	part	of	Static	Application	Security	
Testing	(SAST)

Perform	line	by	line	detection	of	program	bugs	or	logic	errors	based	on	
program	code	analysis

Focused	on	verification	of	
◦ Insufficient	filtration	of	user-supplied	data
◦ Improper	memory	management	and	buffer	boundary	checks
◦ Application	logic	flaws	and	race	conditions
◦ Authentication	and	authorization	bypass
◦ Usage	of	unsafe	methods	and	functions
◦ Sensitive	information	disclosure

List	of	tools:	
https://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis

6/11/2015 COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015 152

Sample	Code	Review	Tools

6/11/2015 COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015 153

Sample	Code	Review	Tools

6/11/2015 COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015 154

Dynamic	Application	Review
Also	known	as	Dynamic	Application	Security	Testing	(DAST)

Dynamic	program	analysis	is	the	analysis	of	computer	software	that	is	
performed	by	executing	programs	on	a	real	or	virtual	processor.	

Execute	 the	target	program	with	sufficient	test	inputs	to	produce	
interesting	behavior.	

Use	of	software	testing	measures	 such	as	code	coverage	helps	ensure	
that	an	adequate	slice	of	the	program's	set	of	possible	behaviors	has	
been	observed.	

Can	be	tested	within	sandbox	in	order	to	monitor	the	connections	to	
the	“contained	Internet”

List	of	Tools:	https://en.wikipedia.org/wiki/Dynamic_program_analysis

6/11/2015 COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015 155

Application	Layer	Firewall
Application	firewall	is	layer	7	filtering	mechanism	monitoring	and	
filtering	the	network	traffic

That	can	be	used	for	monitoring	the	application	based	attacks

Application	firewalls	include:
◦ Web	application	firewall
◦ Database	firewall
◦ XML	gateway
◦ Oracle's	OAG
◦ Java	gateway

6/11/2015 156COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015

Sample	Web	Application	
Firewall

6/11/2015 COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015 157

Zero-day	Vulnerability
From	Wikipedia
◦ A	zero-day	(also	known	as	zero-hour	or	0-day)	vulnerability	is	an	undisclosed	
and	uncorrected	computer	application	vulnerability	that	could	be	exploited	
to	adversely	affect	the	computer	programs,	data,	additional	computers	or	a	
network.

◦ It	is	known	as	a	"zero-day"	because	once	a	flaw	becomes	known,	the	
programmer	or	developer	has	zero	days	to	fix	it.

6/11/2015 COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015 158

Virtual	Patching
One	mechanism	is	virtual	patching.	
(http://whatis.techtarget.com/definition/virtual-patching)
◦ Virtual	patching	is	the	quick	development	and	short-term	 implementation	of	a	
security	policy	meant	to	prevent	an	exploit	from	occurring	as	a	result	of	a	newly	
discovered	vulnerability.	

◦ A	virtual	patch	is	sometimes	called	a	Web	application	firewall	(WAF).
◦ Will	not	modify	 the	code	or	library	of	the	system

A	patch	is	a	quick	repair	job	for	a	piece	of	programming.	Typically,	a	patch	is	
developed	and	distributed	as	a	replacement	for,	or	insertion	in,	compiled	
code.	

Virtual	Patching	Tools
◦ Intermediary	device	such	as	a	WAF	or	IPS
◦ Web	server	plugin	such	as	ModSecurity
◦ Application	layer	filter	such	as	ESAPI	WAF

6/11/2015 COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015 159

Virtual	Patching
Origins	of	Virtual	Patching
◦ From	2003,	TippingPoint introduced	Digital	Vaccine	as	part	of	NIPS
◦ Then	Trend	Micro’s	virtual	patching
◦ F5	Big-IP	Web	Application	Firewall	(WAF)	and	Imperva SecureSphere

Advantage
◦ Faster	to	partially	solve	the	vulnerability
◦ No	program	code	has	to	be	changed

Drawback	and	dangers
◦ Not	able	to	resolve	all	issues
◦ Organization	has	less	 incentives	to	rectify	the	issues

6/11/2015 COPYRIGHT	©	RICCI	IEONG	FOR	UST	TRAINING	2015 160

